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a b s t r a c t

The potential of near infrared spectroscopy to determine the content of flavanols directly recording the
infrared spectra of grape seeds has been evaluated. Moreover, the study shows the potential of this
technique to obtain qualitative information related to the samples. In this case, the feasibility to dis-
criminate between possible vineyards of origin has also been evaluated. Modified Partial Least Squares
(MPLS) regression was used to develop the quantitative models in order to predict the content of fla-
eywords:
lavanols
rape seeds
ear infrared spectroscopy
hemometrics

vanols. These models have been validated showing differences between 3.5% and 14.3% in the external
validation. Moreover, Discriminant Partial Least Squares algorithm was used in the qualitative analysis
to distinguish between two possible vineyards of origin and showed a high degree of accuracy. Predic-
tion rates of samples correctly classified with a mean of 95% in internal validation and 97% in external
validation were obtained. The procedure reported here seems to have an excellent potential for a fast and
reasonably inexpensive analysis of these flavanols in grape seeds and could also be a tool to distinguish

ds of
between possible vineyar

. Introduction

Grape seeds represent only 0–6% of berry weight, neverthe-
ess they can provide a large source of phenolic compounds to
ed wines [1,2]. Phenolic composition in grape seeds depends on
ultiple factors such as variety, soil, viticulture practices, envi-

onmental conditions and degree of ripeness among others [3–5].
he presence and distribution of flavanols in grape seeds have
een studied by several authors [2,6–10] showing that monomers
re usually the most abundant compounds. (+)-Catechin is often
he most abundant individual flavanol in seeds, although (−)-
picatechin is also well represented; however, some grape varieties

isplay similar levels of both monomers or an even higher pro-
ortion of epicatechin. The oligomers of proanthocyanidins are
ainly dimers and trimers in which the elemental units are essen-

ially bound by type C4→C8 interflavan bonds. The dimer B2 and

Abbreviations: C, (+)-catechin; EC, (−)-epicatechin; B1, catechin-(4�→8)-
atechin; B2, catechin-(4�→8)-epicatechin; B3, catechin-(4�→8)-catechin; EEC,
picatechin-(4�→8)-epicatechin-(4�→8)-catechin; M, total monomers; D, total
imers; DG, total galloylated dimers; T, total trimers; TG, total galloylated trimers;
E, total tetramers; TT, total compounds; TTG, total galloylated compounds.
∗ Corresponding author. Tel.: +34 923 294 537; fax: +34 923 294 515.

E-mail address: jmhhierro@usal.es (J.M. Hernández-Hierro).

039-9140/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.talanta.2010.07.063
origin.
© 2010 Elsevier B.V. All rights reserved.

trimer EEC usually present the highest amounts in their respective
oligomer groups. Another characteristic of the flavanol composi-
tion of grape seeds is the presence of derivatives esterified with
gallic acid [8]. Levels of galloylated flavan-3-ols are noticeable in
seeds although these compounds are usually in smaller amounts
than the non-galloylated ones [9,11]. During maturation, changes
in the flavanolic composition occur which affect the tannic inten-
sity and astringency of seeds [12]. Monitoring these changes could
be an important tool in deciding the optimal harvest time. This
requires having rapid methods of analysis available with minimal
or no sample preparation.

Near infrared spectroscopy (NIRS) provides fast, accurate, direct
and non-destructive analysis. It allows qualitative and quantitative
analysis to be performed in different matrices thereby reducing
costs compared to wet chemical analysis and without generating
waste. Therefore, this technique coupled with chemometric tools
could provide an alternative method to undertake the analysis of
proanthocyanidins in grape seeds.

The use of infrared spectroscopy has increased considerably
in enological analysis. Among others, Fourier Transform Infrared

Spectroscopy (FT-IR) has been used to identify varieties of Greek
wines [13] and to determine phenolic compounds (pigmented
polymers) [14], organic acids [15] and polysaccharides [16] in wine.
Furthermore, this method has been used in order to determine
the quality of grapes at harvest [17] and the mean degree of poly-
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erization in grape seed extracts [18]. Mid infrared spectroscopy
as been applied to discriminate between organic or non-organic
ines [19], to detect fermentation problems [20] and to verify the

uthenticity of some wines [21].
Near infrared spectroscopy (NIRS) has been used to classify

rapes according to maturity, wines according to their geographic
ocation [22–25] and to measure condensed tannins and dry matter
n red grapes homogenates [26]. Moreover NIRS has been applied
o determine mineral elements [27], reducing sugars [28], aromas
29] or phenolic compounds (malvidin-3-glucoside) in wine [30].

The aim of this work is to evaluate the potential of NIR technol-
gy to determine the main flavanols present in seeds. In addition to
his, the distinction between two vineyards of origin was also eval-
ated. To our knowledge, this is the first time that NIRS has been
sed for these purposes using only intact grape seeds.

. Materials and methods

.1. Samples

Vitis vinifera L. cv. “Graciano” red grape samples were collected
rom two different vineyards located in La Rioja (Spain). P.O.D La
ioja is divided into regions according to their agro-climatic char-
cteristics. Vineyard 1 is located in Logroño (Rioja Media) and
ineyard 2 is located 40 km away, in Haro (Rioja Alta). The first
egion is under the influence of Mediterranean climate while Rioja
lta generally is cooler and is under the influence of Atlantic cli-
ate.
In order to have a wide range of flavanol concentrations, the

amples were collected at different developmental stages from
eraison (September) to over-ripeness (November) in two different
intages (2008 and 2009). In the case of 2008 vintage seven dates
ere taken into account for vineyard 1 and eight for vineyard 2.

or 2009 vintage the number of dates taken into account was six for
ineyard 1 and seven for the vineyard 2. Three groups of 150 berries
er vineyard were collected at each date. A total of 84 samples were
ollected in this study corresponding to 39 samples from vineyard
and 45 samples from vineyard 2. The berries were collected from
oth sides of vines located in different rows within the vineyard.
dge rows and the first two vines in a row were avoided. Berries
ere collected from the top, middle and bottom of the cluster and
ere immediately frozen and stored at −20 ◦C until analyses were
erformed. Grape seeds were separated manually from the integral
rapes and the remaining pulp was removed with the aid of filter
aper. Two aliquots were taken from each sample, one for the HPLC
nalysis and the other for the near infrared analysis.

.2. Chemical analysis

Grape seeds separated manually were freeze-dried and ground
o obtain a homogeneous powder for extraction. The grape seed
owder was extracted with 75% methanol (Merck, LiChrosolv®,
armstadt, Germany) and the HPLC-DAD–MS analyses were car-

ied out in accordance with Ferrer-Gallego et al. [12]. Quantification
as performed by HPLC-DAD using calibration curves of (+)-

atechin, purchased from Sigma and of procyanidins obtained in
ur laboratory as described in González-Manzano et al. [31]. All
nalyses were performed in triplicate.

.3. Near infrared spectroscopy analysis
The aliquot of intact grape seeds of each sample was used to
arry out near infrared spectroscopy analysis. A Foss NIRSystem
000 was used. Transport quartz cup capsules, known as rect-
ngular cups with a window surface of 4.7 cm × 5.7 cm and an
Fig. 1. Average and standard deviation (10 times amplified) spectrum of the whole
group (84 samples) in the NIR zone between 1100 and 2498 nm.

optical pathway of 1.7 cm, were used in the 1/2 full mode. Mea-
surements were made between 1100 and 2498 nm. The spectra
were recorded at intervals of 2 nm, 32 scans were performed for
both reference and samples. To minimise the spectral sampling
error, all the samples were analysed in triplicate and averaged to
obtain each sample spectrum. The cup was washed with a mixture
of methanol–distilled water (50:50), rinsed with distilled water and
dried to avoid contamination among samples. A total of 84 spectra
were recorded corresponding to the samples previously described.
Fig. 1 shows the average and standard deviation (10 times ampli-
fied) spectrum of the whole group (84 samples) in the NIR zone
between 1100 and 2498 nm.

The software used was Win ISI® (v1.50) (Infrasoft International,
LLC, Port. Matilda, PA, USA). This software allows not only the spec-
tral acquisition but also the data treatment and the qualitative and
quantitative models development. From the three samples of each
date one (33%) was allocated into the validation set and the other
two (66%) into the calibration set. The samples from each day were
randomised allocated into calibration or validation set.

2.4. Chemometric techniques

A supervised pattern recognition technique, with a priori knowl-
edge about the category membership of samples, was used in the
qualitative analysis. Discriminant Partial Least Squares (DPLS) was
used, which is a lineal, parametric, discriminant method and per-
mits the modelling of classes. It has the advantage of being able to
manage collinear variables, missing data and noisy variables and
can deal with overlapped classes. The calibration was conducted
by making a regression on the spectral information on all of group
values, in this case defined as 1 or 2. The regression method applied
to this procedure is MPLS, which is a modification of a normal PLS
1 [32,33].

Spectral pre-treatments are usually applied to NIR raw data,
especially when these data are used to develop quantitative mod-
els. The effects of scattering were removed using Multiplicative
Scatter Correction (MSC), Standard Normal Variate (SNV), Detrend
[34,35]. Moreover, several mathematical treatments were tested
in the development of the NIRS calibrations, a,b,c,d, where the first
digit is the number of the derivative; the second is the gap over
which the derivative is calculated; the third is the number of data
points in a running average or smoothing, and the fourth is the
second smoothing [36].
Prior to quantitative analysis an unsupervised pattern recog-
nition technique, principal component analysis (PCA) was used in
order to provide information about the latent structure of spectral
data. This method provides not only information related to spec-
tral outliers and distribution of samples in the created space, but is
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Table 1
Flavanol content in mg g−1 of seed.

Minimum Maximum Mean SD

C 1.46 12.27 5.07 3.17
EC 2.27 18.92 7.06 4.78
B1 0.64 1.30 0.84 0.15
B2 1.13 2.49 2.01 0.30
B3 0.50 1.27 0.79 0.18
EEC 0.98 2.26 1.49 0.36
M 4.03 31.20 12.12 7.86
D 4.12 5.30 4.76 0.31
DG 2.35 9.11 4.51 1.86
T 3.93 9.28 5.75 1.52
TG 1.68 5.37 2.94 0.85
TE 1.77 3.44 2.43 0.48
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TTG 7.17 27.55 12.67 5.26
TT 25.46 74.33 39.77 13.14

D: standard deviation (n = 84).

lso an important source of knowledge to create cross-validation
roups used in the calibration process. Moreover, this is a useful
ool to identify whether unknown samples do not belong to the
pectral space created by the samples from which the equations
ere developed. In this case, the equations should not be used to
ake any prediction [36,37].
Calibrations were performed by modified partial least squares

egression (MPLS), which is often more stable and accurate than
he standard PLS algorithm. In MPLS, the NIR residuals at each
avelength, obtained after each factor has been calculated, are

tandardized (dividing by the standard deviations of the residuals
t each wavelength) before calculating the next factor. When devel-
ping MPLS equations, cross-validation is recommended in order
o select the optimal number of factors and to avoid overfitting
36]. For cross-validation, the calibration set is divided into several
roups; each group is then validated using a calibration developed
ith the other samples. In this process other types of outliers are

dentified which present high residuals when they are predicted by
he model. Finally, validation errors are combined into a standard
rror of cross-validation (SECV).

. Results and discussion

.1. Chemical analysis
Up to 36 flavanolic compounds were determined by HPLC-
AD–MS. These compounds were organized in groups taking

nto account the existence of galloylation and the polymerization
monomers to tetramers). Moreover, major individual compounds
ere also considered. Table 1 only shows the range, mean value and

Fig. 3. Score plot of grape seed samples in the space de
Fig. 2. Dummy variable plot of grape seed samples. Internal and external validation
of the DPLS method.

standard deviation of the flavanol contents in the created groups
and of the individual compounds that in the later development of
NIR models achieved, suitable results.

3.2. Near Infrared spectroscopy analysis and chemometric
techniques

3.2.1. Qualitative analysis
Modelling of the groups was carried out using the NIR raw spec-
tral data and one dummy variable, whose values were 1 and 2, thus
the explicit algebraic models denominated DPLS were constructed.
The model was developed using 11 PLS factors and presented an
RSQ of 0.718, SEC of 0.27 and SECV 0.33. The spectral regions
between 1100–1358 and 1800–2100 nm showed important con-

fined by PC1 (87.6%), PC2 (6.0%) and PC3 (3.5%).
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ributions to the model loadings and are mainly related to second
vertones of C–H and second overtones of the bonds present in
he COOH groups, respectively [38,39]. The DPLS developed model
redicted a dummy value for each sample and then the samples
ere allocated according to their predicted values ±0.5 in the cor-

esponding vineyard with a dummy variable breakpoint of 1.5. The
redicted dummy variable plot for the qualitative model is shown

n Fig. 2. Samples of vineyard 1 cluster around a dummy value of
.0, while those belonging to vineyard 2 around 2.0. Moreover, mis-
akes occurring in the internal and external validation were also
ndicated in this plot. These mistakes were samples incorrectly clas-
ified whose dummy values ±0.5 did not correspond to the correct
ne. A prediction rate of samples correctly classified was obtained
mean of 95% in internal validation and 97% in external validation).
his demonstrates that NIR spectroscopy and discriminant DPLS
nalysis permit a clear differentiation between the two vineyards.

.2.2. Quantitative analysis
As part of the quantitative analysis an SNV 2,4,4,1 spectral

re-treatment was applied to NIR raw data of samples from the cal-
bration set and then principal component analysis was carried out.
he spectral variability explained was 98.87% and 6 principal com-
onents were required. The Mahalanobis distance was calculated.
his measure indicates how different the spectrum of the unknown
ample is from the average spectrum in the calibration set. Sam-
les with an H-value (Mahalanobis distance) greater than 3 may
e considered as not belonging to the population from which the
quations were developed, for this reason 3 samples were removed.
he risk of mistakes in the equations under practical conditions is
ery low or almost nil when using the standardized H-statistic dur-
ng routine analysis of unknown samples. Samples with an H-value
reater than 3 should not be used to make any prediction [36]. Fig. 3
hows the scores of the grape seeds in the space defined by the first,
econd and third principal components. This plot allows visualiza-
ion of differences between the 2008 and 2009 vintages, whereas
his is more difficult to observe in the case of the vineyard. More-
ver, this plot shows that a noticeable spectral variability was taken
nto account to develop the NIRS models. Vineyards, ripeness and
intages were important sources of this variability.

Using the raw spectral data of the remaining samples (without
-outliers) and testing different spectral pre-treatments and allo-
ating the corresponding HPLC-DAD quantitative flavanols’ values
o each sample, calibrations were performed by modified partial
east squares regression (MPLS). In this method, the set of calibra-
ion samples is divided into a series of subsets in order to perform
ross-validation to set the number of PLS factors and remove the
hemical outliers. Using the T ≥ 2.5 criterion, samples that present
igh residual value when they were predicted were eliminated

rom the set. The statistical parameters of the final calibration equa-
ions are shown in Table 2 where N is the number of samples
sed to obtain the calibration equation after eliminating the sam-
les for spectral (H criterion) or for chemical reasons (T criterion).
he best of the different mathematical treatments, concentration
ange, and standard deviations are also shown. The spectral regions
round 1150, 1400, 1650, 1920 and 2280 nm show important con-
ributions to the models loadings. These could be related to first
nd second overtones of aromatic CH bonds (1650 and 1150 nm
espectively), first and second overtones of OH alcohol functional
roup (2280 and 1400 nm respectively) and second overtone of

O bonds present in COOH carboxylic acids or COOR esters func-
ional groups (1920 nm). These can be attributed to the chemical

tructure of the compounds analysed [38,39].

In order to evaluate NIR technology models an internal valida-
ion was carried out using samples that belonged to the calibration
roup after eliminating outliers. The prediction capacity of the
odel was assessed using the RPD (ratio performance deviation) Ta

b
le

2
C

al
ib

ra
ti

on
st

at
i

Sp
ec

tr
al

p
re

-t

N
on

e
2,

8,
6,

1
St

an
d

ar
d

M
SC

D
et

re
n

d
2,

8,
6

SN
V

2,
10

,1
0,

1
St

an
d

ar
d

M
SC

D
et

re
n

d
1,

4,
4

D
et

re
n

d
2,

8,
6

N
on

e
1,

4,
4,

1
D

et
re

n
d

2,
8,

6
SN

V
2,

4,
4,

1
St

an
d

ar
d

M
SC

SN
V

2,
4,

4,
1

D
et

re
n

d
1,

4,
4

D
et

re
n

d
1,

4,
4

N
:

n
u

m
be

r
of

sa



1782 R. Ferrer-Gallego et al. / Talanta 82 (2010) 1778–1783

Table 3
Internal and external validations of quantitative NIR models.

Flavanols Internal validation External validation

RPD RSQ SEP (mg g−1) SEP (C) (mg g−1) Difference (%) ANOVA (p-value) SEP (mg g−1)

C 7.7 0.983 0.37 0.37 12.8 0.91 0.66
EC 10.7 0.991 0.38 0.38 11.4 0.84 1.04
B1 5.4 0.966 0.03 0.03 4.8 0.92 0.06
B2 2.8 0.874 0.10 0.10 7.4 0.61 0.20
B3 2.8 0.874 0.05 0.05 8.3 0.48 0.12
EEC 4.7 0.988 0.79 0.79 9.9 0.11 0.21
M 9.3 0.954 0.07 0.08 12.6 0.95 1.37
D 2.6 0.848 0.12 0.12 3.5 0.63 0.28
DG 9.9 0.99 0.16 0.16 7.4 0.94 0.51
T 5.2 0.962 0.29 0.29 10.6 0.21 0.82
TG 6.0 0.971 0.12 0.12 11.2 0.87 0.51
TE 4.7 0.953 0.10 0.10 10.2 0.88 0.37
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TTG 4.2 0.941 1.09 1.10
TT 9.6 0.989 1.31 1.32

PD: ratio performance deviation; SEP: standard error of prediction; SEP (C): correc

arameter, defined as the relationship between the standard devi-
tion of the chemical method (SD ref) and that of prediction in the
IR model (SEP). The RPD value should ideally be greater than 2.5.
hen this is the case it is assumed that the calibration model is

dequate. All the models developed in this study present values
igher than 2.5, therefore these models present an adequate pre-
iction capacity [40]. Other descriptors of the internal validation
re shown in Table 3.

We checked the robustness of the method by applying NIRS
echnology to 28 samples that did not belong to the calibration
roup. The calibration equations obtained during the work were
pplied and the predicted values were compared with the reference
ata. Table 3 also shows the results obtained in the external vali-
ation. The NIRS methodology and the reference data for flavanols
ere compared using one-way ANOVA (SPSS 13.0, Inc., Chicago,

L). All the p-values obtained were higher than 0.05, thus there
ere no differences between the results obtained and it can be

oncluded that the method provides significantly equal values to
hose of the starting reference data. The differences between the
PLC reference method and the NIRS technique in the external val-

dation were between 3.5% for D and 14.3% for TTG, the SEP values
re also presented.

The biosyntesis of these compounds follow essentially the same
ourse so inter-correlations among them could be expected [41].
he correlations evidenced among these compounds show that it
s not possible to ascertain if the results of NIRS models for pre-
icting the composition of these flavanols were due to their real
bsorbance or the correlation between them.

. Conclusions

The results of this work show that the models developed using
IRS technology together with chemometric tools allow the con-

ent of flavanols to be determined in intact grape seeds throughout
he maturation process and also specify the vineyard of origin. The
rocedure reported here seems to have an excellent potential for
fast and reasonably inexpensive analysis of these flavanols in

rape seeds and to distinguish between possible vineyards of origin.
oreover, a comprehensive study should be made in order to eval-

ate factors, such as different production areas and grape varieties,
n the development of these models.
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